Thermophones using carbon nanotubes and alternative nanostructures for high power sound generation and noise cancellation

نویسندگان

  • Ali E. Aliev
  • Alan G. MacDiarmid
چکیده

There is a large promise for thermophones in high power sonar arrays, flexible loudspeakers and noise cancellation devices. The freestanding aerogel-like carbon nanotube sheet as a thermoacoustic (TA) heat source demonstrates so far the best performance. However, the limited accessibility of large size free standing carbon nanotube sheets and other even more exotic materials published recently, hampers the field. I present here new alternative materials for TA heat source with high energy conversion efficiency, additional functionalities, environmentally friendly and cost effective production technologies. I discuss the TA performance of alternative nanoscale materials and compare their spectral and power dependencies of sound pressure in air. The study presented here focuses on engineering of thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of TA projectors for high power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative nanostructures for thermophones.

Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials rec...

متن کامل

Thermophones and Quantum Mechanics

Thermophones for over a century have been thought to function as thermo-acoustic devices converting an alternating current to rapid temperature changes in thin platinum films. Subsequent pressure changes in the surrounding air allow the sound to propagate. Recently, thermophones from nanoscale sheets of carbon nanotubes (CNTs) are claimed to have far lower specific heat than platinum, and there...

متن کامل

Sonocatalysis degradation of methyl orange using zinc sulfide carbon nanotubes nanocatalyst

Dye sewage is dangerous problem in our environmental aquatics that cause generation of harmful effects for living organism. In this work, because of simplicity, easy operation, high efficiency and no creating secondary pollutants, ultra sound radiation applied for degradation of a synthetic dye, methyl orange using zinc sulfide nano particles decorated on carbon nanotubes as nanocatalyst. ZnS/C...

متن کامل

A Highly LinearLNA with Noise Cancellation for 5.8–10.6 GHz UWB Receivers

This paper presents a new ultra-wideband LNA which employs the complementary derivative superposition method in noise cancellation structure. A pMOS transistor in weak inversion region is employed for simultaneous second- and third-order distortion cancellation. Source-degeneration technique and two shunt inductors are added to improve the performance at high frequencies. The degeneration induc...

متن کامل

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014